ResinTech SACMP is a sodium form macroporous highly crosslinked strong acid cation resin. ResinTech SACMP is intended for high flow rate and high temperature polishing applications, as well as other applications that require the highest possible physical strength and chemical durability. SACMP is available in the sodium or hydrogen form (when ordered as SACMP-H).

FEATURES & BENEFITS

- **MACROPOROUS STRUCTURE**
 Gives greatly increased life in stressful applications where resin degradation due to thermal and oxidative effects is anticipated

- **CONTROLLED PARTICLE SIZE**
 16 to 50 mesh size provides a low pressure drop and superior kinetics

- **SUPERIOR PHYSICAL STABILITY**
 98% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop

- **COMPLIES WITH US FDA REGULATIONS**
 Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

PRESSURE LOSS
The graph above shows the expected pressure loss of ResinTech SACMP per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH
The graph above shows the expansion characteristics of ResinTech SACMP as a function of flow rate at various temperatures.
Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums. For operation outside these guidelines, contact ResinTech Technical Support.

CAUTION: DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

MATERIAL SAFETY DATA SHEETS (MSDS) are available for all ResinTech Inc. products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used. These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Mineral is a registered trademark ® of RESINTECH INC.

SACMP® rev 1.4

PHYSICAL PROPERTIES

Polymer Structure: Styrene/DVB
Polymer Type: Macroporous
Functional Group: Sulfonic Acid
Physical Form: Spherical beads
Ionic Form as shipped: Sodium or Hydrogen
Total Capacity
 Hydrogen form: >1.6 meq/mL
 Sodium form: >1.65 meq/mL
Water Retention
 Hydrogen form: 50 to 60 percent
 Sodium form: 45 to 55 percent
Approximate Shipping Weight
 Hydrogen form: 48 lbs./cu.ft.
 Sodium form: 50 lbs./cu.ft.
Swelling, Na to H: 3 to 5 percent
Screen Size Distribution (U.S. mesh): 16 to 50
Maximum Fines Content (<50 mesh): 1 percent
Minimum Sphericity: 95 percent
Uniformity Coefficient: 1.6 approx.
Resin Color: Tan

Note: Physical properties can be certified on a per lot basis, available upon request.

APPLICATIONS

SOFTENING

SACMP Softening Capacity

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO₃, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

DEMINERALIZATION

ResinTech SACMP-H can be used as the cation component in demineralization configurations where a hydrogen form cation resin is coupled with a hydroxide form anion resin. SACMP-H is ideal for high flow rate polishers and where high resistance to mechanical, thermal, and oxidative stresses is required.

RADIATION

ResinTech SACMP is ideally suited for radwaste applications. The high crosslinking content of SACMP gives it improved resistance to chemical damage caused by ionizing radiation. Structural integrity is maintained up to approximately 1 x 10⁹ rads exposure.